The manufacture and maintenance of industrial and medical sensors can be prohibitively expensive. We present a platform for producing cheap, low-power, passive carbon nanomaterial sensors that can be easily integrated into portable devices. This versatile platform has the capacity to detect and quantify a myriad of chemical substances. We also present a method for safely degrading unused sensor material in order to neutralize environmental hazards.
Shao, W., Shurin, M. R., Wheeler, S. E., He, X., & Star, A. (2021). Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Applied Materials & Interfaces, 13(8), 10321–10327. https://doi.org/10.1021/acsami.0c22589
Galanos, N., Chen, Y., Michael, Z. P., Gillon, E., Dutasta, J., Star, A., Imberty, A., Martinez, A., & Vidal, S. (2016). Cyclotriveratrylene‐Based Glycoclusters as High Affinity Ligands of Bacterial Lectins from Pseudomonas aeruginosa and Burkholderia ambifaria. ChemistrySelect, 1(18), 5863–5868. https://doi.org/10.1002/slct.201601324
Chen, Y., Michael, Z. P., Kotchey, G. P., Zhao, Y., & Star, A. (2014). Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 6(6), 3805–3810. https://doi.org/10.1021/am500364f
Chen, Y., Vedala, H., Kotchey, G. P., Audfray, A., Cecioni, S., Imberty, A., Vidal, S., & Star, A. (2011). Electronic Detection of Lectins Using Carbohydrate-Functionalized Nanostructures: Graphene versus Carbon Nanotubes. ACS Nano, 6(1), 760–770. https://doi.org/10.1021/nn2042384
Vedala, H., Chen, Y., Cecioni, S., Imberty, A., Vidal, S., & Star, A. (2010). Nanoelectronic Detection of Lectin-Carbohydrate Interactions Using Carbon Nanotubes. Nano Letters, 11(1), 170–175. https://doi.org/10.1021/nl103286k